15 May

The Value of Key Performance Indicators in the Process Industry

Control Room

_

The term Key Performance Indicator, or KPI, is all over the internet. A simple Google search will bring up a ton of blogs about KPIs for various industries. While the term is rather general, it’s meant to serve a specific purpose. That is the great triumph and great downfall of KPI. There are many to choose from for every business, but the KPIs chosen must be specific to business needs and goals to work.

When it comes to integration and automation, KPIs service a vital purpose. They represent the responsibility of technology to examine all data and present it to a plant operator as information. Data is nothing but numbers, ones and zeros representing all the inner workings of a machine. Sifting through all that would take a human far longer than necessary and can delay crucial action. That’s why we have automation. Intelligent technology can be assigned KPIs and programmed to deliver specific information interpreted from the mass of data.

Consider all you can measure on a human body. There are basic numbers, such as weight and calorie intake as well as performance numbers such as how much weight the body can lift, squat, bench or push. This is like the body of a plant or control system. All that data is important to someone, be they a nutritionist, doctor or trainer. Each person has certain KPIs they’re looking for just like each engineer may be assigned a specific section of the plant.

In optimized systems, KPIs can serve an even greater purpose. Through the interpretation of a few data points, a plant manager can be given the pulse of their system. One glance is all that’s needed for an engineer to diagnose whether their system is healthy or not when using optimized control systems with strategic KPIs.

What KPIs do you consider most important to your business?

Are your control systems optimized to quickly diagnose the pulse of your plant?

_

_

09 May

The Importance of Employees in Predictive Management

Employees in Predictive Management

In a perfect world, no plants would have to experience downtime for repairs and maintenance. While technology may never achieve that level of perfection, advanced technologies have grown better at preventing the need to halt operations for repairs. It all boils down to predictive maintenance and support.

Predictive maintenance is twofold, involving both site assets and employees. Dollars spent on equipment should focus on optimized measurement. Systems and alarms can be put in place so that all vital elements are continuously monitored. In this way, all information that can possibly be aimed at reducing downtime. Whether or not these assets effectively reduce the need for downtime is all up to the plant engineers.
We always stress the value and importance of client engineers throughout a project. Everything we put into an optimized control system is tailored toward the needs of client employees. They’re action is key to predictive maintenance and the reduction of down time.

Good control logic is to prioritize alarms so that the most urgent matters are attended to first. That doesn’t make any alarm less important. They have been programmed into the system for a purpose. Small alarms can alert plant engineers of minor problems which can usually be fixed without any downtime.

These are the kinds of alarms that reduce downtime. When left alone, small problems can snowball into huge events that require downtime and expensive repairs.  Attention to minor alarms can save a business huge amounts of money. With advanced, optimized control systems, plant employees can come that much closer to perfect predictive management.

02 May

The Importance of Expert Project Managers

The Importance of Expert Project Managers

Here at Synergy, we often boast about our ability to handle project management tasks. From the goal setting kickoff to the startup completion of a project, we are there taking full responsibility. This is a significant advantage to our clients. Technical skills are uniquely different from management skills, which is why we make a point provide expert engineers with both.

Technically minded people are focused on the control systems, HMIs and computer jargon that go into the creation of a product. Their skill set is essential, as their work creates the vital components clients use to run their processes. Making sure those components match client goals is the responsibility of the project manager.

In addition to technical expertise, a project manager must have the proper skills to evaluate risk and goals, create a schedule and foster communication between all parties. When handled by a system integrator, clients rest assured they are getting quality solutions without having to spend time managing these aspects of a project.

Having an integrator who takes full responsibility and also makes a point to keep clients in the loop as projects progress is invaluable. It releases client manpower that can then be funneled into more important tasks in addition to ensuring a solution that hits all the desired goals and outcomes.

24 Apr

Address your Vulnerabilities in Cyber Security

Address your Vulnerabilities in Cyber Security

Control Engineering recently published the results of their 2014 Cyber Security study. Data was collected from individuals directly involved in their organization’s cyber security efforts. The most alarming results involved threat levels and vulnerability assessments. A quarter of respondents claimed their threat was high and nearly the same amount reported they had never performed a vulnerability assessment.

Cyber security continues to be a hot topic as plant assets become more interconnected. These systems provide huge benefits for optimization and monetary gain. With each new addition or replacement in a plant, safety and security measures should be considered.

Threat levels can’t always be changed. Certain systems must be connected to the internet and some industries are targets simply by existing. For example, power plants are tied to national security. There is no avoiding the threat level and need for security. The good thing is, effective cyber security is out there.

Vulnerability assessments are crucial to defining where the largest threats are at.  When people think of cyber security, they usually consider computer viruses and hackers. While these are very real threats, a vulnerability assessment may bring to light other areas of concern, such as internal threats. The perfect example of this is flash drives. While they may be convenient to use and seem harmless, a person can accidentally transfer a virus with these devices.

Cyber security measures are just as important as plant safety. When systems are at risk, the machines they control may also be at risk. With so much of today’s businesses revolving around cyber data, going without cyber security is no longer an option.

16 Apr

Is There Potential for Google Glasses in Process Industries?

This photo, “Glass Magic” is copyright (c) 2014 Erica Joy and made available under an Attribution-ShareAlike 2.0 Generic license

For a short time this week, the public was offered the chance to purchase Google Glass. These glasses have the ability to display information, like GPS, emails and weather, right in front of you without blocking vision. The price of $1,500 might seem like a lot for fancy glasses, but they quickly sold out. The world is paying attention, including the worlds of manufacturing, automation and integration.

Perhaps the idea of having a display in the corner of your eye seems superfluous for everyday life, but Google Glass could provide a great addition to safety within process plants. Plant engineers often work with delicate and hazardous machinery. Safety is a top priority because it would often be far too easy for something to go horribly wrong. There has been a lot of talk about mobile devices, such as tablets and smart phones, being used in manufacturing environments, but they still demand the attention of our hands.

The technology that could evolve out of Google Glass removes the need for hands, allowing a person to work with both while still reading information transmitted by the glasses. In a temperature sensitive environment, workers could always have the temperature displays before them. While performing time sensitive work, a time display could sit just on the edge of their vision in the glasses.

Following the tablets and smart phones that came before, it’s only a matter of time before technologies like Google Glass make their way into manufacturing and process plants. While the current model is a bit limited, with the potential to display only one set of information at a time, it’s not that much of a stretch to consider the possibility of safety glasses with displays. Removing the need for engineers to have to leave a task and check a display could even take a step beyond safety and establish a new standard for optimizing personnel within plants and process systems.

 

10 Apr

Overlooked Benefits of Safety Optimization

Overlooked Benefits of Safety Optimization

Safety is an obvious priority within a process system or a boiler plant. The amount of income that could be lost due to destroyed equipment or injured personnel is enough for any plant manager to take safety seriously. Those who have implemented excellent safety systems have found that they are far more than a safety net. From office culture to monetary savings, optimized safety management offers a multitude of benefits.

The financial benefits of safety management come from the prevention of future malfunctions. While there are certainly aspects of safety that can have an immediate monetary benefit, the prevention aspect carries far more value. When a huge plant has a major malfunction, newscasters love to go on about the millions and sometimes billions of dollars in damage. Avoiding such catastrophes is a huge monetary benefit.

Optimization of alarm management is another great benefit. Part of developing a safety system is understanding what types of issues automation can handle on its own and those that need the guidance of an operator. If a bunch of alarms swarm on a screen all at once, that can create a lot of headaches, even more so if many of the alarms are nuisances. Safety is then compromised if operators can’t quickly decipher which alarm to pay attention to if they get used to ignoring nuisances. Prioritization and optimization of how alarms are handled within in a process system increases safety and frees up operator time for more important tasks.

This brings us to another often overlooked benefit of safety: stress relief and plant culture. Frequent nuisance alarms can create a stressful workplace, especially if there are many alarms appearing at the same time.  Even worse, such alarms can contribute to a culture that slacks off when it comes to safety. This is why the human element cannot be ignored when it comes to safety management. An optimized safety system can go far to optimize the workplace as a whole. Make sure to incorporate training into any new safety system so operators understand how the new system benefits the workplace and how to read the alarms.

The preservation of life and property is a huge motivating factor in optimizing process safety systems. This is part of the reason why we stress it as one of our core values. It’s important to also remember the monetary, organizational and cultural benefits optimized safety maintenance can have. Upgrades to safety systems can serve to improve more than just safety, a fact that only adds to the overall value of these systems.

13 Mar

Critical Measurements in a Process Plant

Critical Measurements in a Process Plant

Measurement is often part of the intelligent HMI discussion from the process industry to boiler systems; the measurement and balance of all materials involved is essential. The list of measurable elements in a plant can seem endless, which begs the question; what measurements should you prioritize in order to have the most efficient process?

This question was posed to Marc L. Hunter, our Vice-President, the other day, to which he replied, “That’s not quite the right question to ask.”

He went on to explain that measurement of anything is dependent on two questions. What is going to happen and what should I pay attention to?

The multitude of factors acting in a plant is indicative of the many different activities being performed. Many of these processes can be easily managed by automation and machines. The most important measurement of a plant then becomes alarms.

Alarm management is vital and should be made as proactive as possible. This requires strategic prioritization of alarms. No alarm should be completely ignored, but a smoothly running system must alert engineers to the most pressing alarms first.

Measurement in a plant therefore boils down to ISA 18.2 Alarm Management Standards. A system made to meet these standards alerts plant engineers of any issue using a prioritized list of alarms. This organization allows for the easy identification of the most critical issues. On days where few high risk problems occur, the less important alarms can be dealt with.

How many priority levels you need to adequately measure the performance of your plant requires a detailed discussion with an engineering consultant with alarm management expertise. The alarm management market offers a substantial variety in terms of the number of priorities levels. There isn’t much of a limit to the number of priority levels you can have. An alarm management expert will help you define just what you need to meet your business goals.

13 Mar

New Elements of Life Cycle Cost

New Elements of Life Cycle Cost

BusinessDictionary.com defines Life Cycle Cost as the “sum of all recurring and one-time costs over the full life span… of a good, service, structure or system.” This is a term often used in our industry, where process equipment and boilers are purchased with the intention of running them decades into the future. The rapid pace of technology, along with growing environmental concerns, has added additional elements to the calculation of life cycle cost. For example, a product with a long life may become obsolete before its end. Another concern is environmental laws. While a systems may be compliant with emission laws right now, changes in the future could hold even stricter emission restrictions.

Upgrading typically requires the replacement of a few parts while maintaining a whole system or product. That is changing with technology’s ever increasing advancement. Upgrading can mean different things depending on the product you purchase. If advanced technology is already being sold in the marketplace, other products may become obsolete as the newer technology takes hold. In a few decades, an upgrade may require complete replacement of some equipment. The latest technology tends to have a higher cost, which much be weighed in terms of the product life cycle. More than likely, a plant is better off choosing the latest technology because it will take a significant amount of time before it becomes obsolete. In the end, less money will be spent throughout the life cycle with a product that remains at the forefront of technology for years to come.

Today’s cutting-edge technology, such as intelligent HMI and variable frequency drives, many benefits, which much also be taken into consideration. Greater efficiency, less maintenance and a smaller environmental footprint are all elements of new technology that save money in a system. Such benefits may be necessary in the future. Our culture has only become increasingly concerned about industrial emissions. It can be assumed, then, that the future will see a gradual tightening of restrictions on emissions. A sure way to avoid negative impacts from future emission restrictions is to ensure your plant surpasses current standards. Installing an economizer can be a simple and cost effective way to begin. In addition to reducing emissions, it saves fuel and energy cost by harnessing the energy that would otherwise be lost up the stack. For these reasons, Synergy’s Economizer Solutions provides the fastest return on investment out of all of our products. At the end of the day, any steps in upgrading or optimizing that can reduce emissions can also reduce the cost of running a system. Such ‘green’ elements should weigh heavy in any life cycle cost analysis.

When it comes to calculating the life cycle cost of your next big business purchase, remember to consider more than purchase price, maintenance and life. Additional concerns, such as environmental impact and whether or not the product will be obsolete in the near future should carry a lot of weight in your decision.

~You aren’t alone in this decision. Synergy’s expert combustion engineers are always available to provide advice on whatever project you may be planning. Contact us at 630–724-1960, extension 12.